这两天,IBM低调地发了一个新闻,推出了一款类脑芯片“北极”(NorthPole),对比4nm节点实现的Nvidia H100 GPU相比,NorthPole的能效提高了五倍,成为当之无愧是现在世界最强的AI芯片。
如此逆天的性能,但在国内,关于这款芯片的新闻却寥寥无几。那么,它究竟是何方神圣?
把脑子装进芯片,就行了?
首先,IBM的“北极”NorthPole是一种类脑芯片,我们需要先了解什么是类脑芯片。
所谓类脑芯片,顾名思义,就是一种高度模拟人脑计算原理的芯片,基于对现代神经科学的理解,反复思考如何从晶体管到架构设计,算法以及软件来模仿人脑的运算。如果把类脑芯片做得更像人脑,就会被赋予一个新的名字——神经形态计算(Neuromorphic Computing)。
人类的思考方法与现在传统的芯片存在许多区别,比如,人没有单独的存储器,没有动态随机存取存储器,没有哈希层级结构,没有共享存储器等等。
“存储”和“处理器”错综复杂地深绕在人脑里,在人脑的结构中有“神经元”的存在。在电脑中,以数字化核心相互交流基于事件的信息,叫做脉冲,这点和人脑传递信息的方式相似。
人类便从人脑中得到灵感,从而创造出这样的芯片,来提升性能,成为真正的“人工智能”,甚至无限接近人类,获得思考能力。
当然,人脑很复杂,而且人们所制造出来的IC器件,也存在优势,所以人们最终目标就是把这二者的优势融合起来。
总而言之,用人话来解释,类脑芯片,就是结合生物大脑和人造器件各自优点而设计制造出来的一种芯片,而它也会像人一样思考,自我学习。
想造一颗这样的芯片,可不是光变器件结构就行的,而是从材料、器件、电路、架构带动算法和应用改变的。一言蔽之,就是集合各种最先进的技术,才能造出这样的芯片。
虽然实现路径很多,但奈何这种芯片技术难度太大了,且不说好不好造,设计出来就很难了,所以目前也在开拓阶段,都还无法达到商业化水平。
但笔者了解到,之所以类脑芯片还未形成大规模商业化,一是因为设计难题依存,就拿英特尔、IBM都看好的CMOS型,多块全数字异步设计的芯片互联、芯片连接的有效性和时效性以及软件层互连计算、分布式计算和灵活分区等问题都难以解决;二是制造、软件和生态都要完全推翻,虽然硅基晶体管路线部分可复用,但底层不可能完全照搬,这就进一步加剧大规模商业化难度。
那,我们为啥费大力气折腾类脑芯片?
类脑芯片实在太香了,笔者了解到,某些情况下,完美的神经形态芯片可以用比传统解决方案低1000倍的能耗来解决问题,这意味着我们可以在固定的功耗预算下,打包更多的芯片来解决更大规模的问题。
类脑芯片的超高能效比足够让我们牟足力气研究和突破。拿一个最典型的例子来看,AlphaGo下棋打败了人类,但人类只用了20瓦的大脑能耗,而AlphaGo是2万瓦。
神经形态芯片涉及的领域和机会,图源丨Nature Computational Science
结构上,目前全世界的类脑芯片基本都一致,都是由神经元计算、突触权重存储、路由通信三部分构成,同时采用与脉冲神经网络(SNN)模型。
但依据材料、器件、电路,分为模拟电路主导的神经形态系统(数模混合CMOS型)、全数字电路神经系统(数字CMOS型)、基于新型器件的数模混合神经形态系统(忆阻器是候选技术)三种流派。
全球范围内,参与神经形态计算芯片开发的机构主要包括三类:英特尔、IBM、高通等为代表的科技巨头企业,斯坦福、清华为代表的高校/研究机构以及初创企业。
根据笔者之前与英特尔研究院对话中获悉,数字CMOS型是目前最易产业化的形式,一方面,技术和制造成熟度高,另一方面,不存在模拟电路的一些顾虑和限制。
当然,需要强调的是,数字CMOS型还只是最初阶的类脑芯片,还算不上完全模拟人脑的神经形态器件,只能算是一种借鉴神经形态理念的一种芯片。但光是借鉴人脑,这种芯片就能够碾压世界上任何一种芯片。IBM的NorthPole就是这样的数字CMOS型的类脑芯片。
类脑芯片主要类型和研发进度,制表丨电子工程世界
IBM的芯片,什么水平?
先说结论,应该是迄今为止,人类水平最高的类脑芯片了,对于类脑芯片研究又上了一个台阶。
2008年,IBM就开始研究类脑计算了,2011年有了第一次突破性成果:IBM的第一代神经突触计算机芯片。研究人员制造出两个这样的芯片模型:一颗包含262,144个可编程突触,一颗则包含65,536个可学习突触,通过测试展示其可执行导航、机器视觉、模式识别、关联记忆和分类等简单功能。
直到2014年,IBM在《科学》杂志发表了一篇文章,向全世界展示了划时代的技术进展:一个符合DARPA SyNAPSE项目指标的、拥有100万神经元的类脑处理器,即TureNorth,在当时掀起了类脑芯片研究热潮。
沉寂8年,“北极”(NorthPole)问世,NorthPole就是建立在IBM最后一颗类脑芯片TrueNorth基础之上,彼时TrueNorth就有这比传统微处理器低四个数量级的能效比,对比一下二者,就能很直观感受到IBM技术的变化:
图/IBM
结构方面,NorthPole与TrueNorth一样,由一个大型计算单元阵列(16×16)组成,每个单元都包含本地内存和代码执行能力。
计算资源方面,NorthPole每个单元都经过优化,可执行精度较低的计算,精度从 2 bit到8 bit 不等。为保证执行单元使用,它们不能根据变量值执行条件分支,也就是说,使用者代码不能包含if语句。这种简单的执行方式使每个计算单元都能进行大规模并行执行。在2 bit精度下,每个单元可并行执行8000多次计算。
存储方面,所有的内存都被封装在一颗芯片内, 这意味着每个内核都可以轻松地访问芯片上的内存。设备外部来看,NorthPole看起来像是一个主动存储芯片,这有助于将NorthPole集成到系统中。
不止如此,这款NorthPole目前采用的是12nm纳米节点工艺制造,目前CPU最先进的技术是3nm,而IBM还在研发2nm纳米节点技术,如果用上2nm,可能IBM的类脑芯片性能还会再提升很大档次。
图/IBM
NorthPole的潜在应用主要包括图像和视频分析、语音识别以及Transformer神经网络,这些网络是为ChatGPT等聊天机器人提供支持的大型语言模型(LLM)。这些人工智能任务可能会用于自动驾驶汽车、机器人、数字助理和卫星观测等领域。
某些应用程序需要的神经网络太大,无法安装在单个NorthPole芯片上。在这种情况下,这些网络可以分解为更小的部分,并分布在多个NorthPole芯片上。
而NorthPole的超高能效比,意味着它不需要笨重的液体冷却系统来运行,风扇和散热器就足够了,而它也可以部署在更小的空间中。
国内开始研究类脑芯片了吗?
如此强大的芯片,国内也早已有所布局。
国内研究则包括清华大学、浙江大学、复旦大学、中科院等顶级学府和机构,同时近两年不断涌现初创公司,如灵汐科技、时识科技、中科神经形态等。其中以清华大学的天机芯和浙江大学的达尔文芯片最具代表性。
具体而言,国内的主要成果包括:
IBM的成果代表着,这项布局未来的技术离我们又近了一步,而目前一些初创公司逐渐形成方案,开始应用。不难预见,在近几年,这项技术商业化将逐步展开,而彼时研究成果也将照进现实。
参考文献
[1] IBM:A new chip architecture points to faster, more energy-efficient AI.https://research.ibm.com/blog/northpole-ibm-ai-chip
[2] IEEE Spectrum:IBM Debuts Brain-Inspired Chip For Speedy, Efficient AI.2023.10.23.https://spectrum.ieee.org/neuromorphic-computing-ibm-northpole
[3] Schuman C D, Kulkarni S R, Parsa M, et al. Opportunities for neuromorphic computing algorithms and applications[J]. Nature Computational Science, 2022, 2(1): 10-19.https://doi.org/10.1038/s43588-021-00184-y
[4] 清华大学:清华大学计算机系张悠慧团队首次提出“类脑计算完备性”.2020.10.16.https://mp.weixin.qq.com/s/-zZpk1pESZ_q2eDWECsIZg
[5] 中科院计算所:计算所研制超导神经形态处理器原型芯片“苏轼(SUSHI)”.2023.9.28.https://mp.weixin.qq.com/s/kUz6hYkI7hvs9a09pDtwhw
[6] 南京发布:问天Ⅰ,类脑计算机.2023.10.17.https://mp.weixin.qq.com/s/Mm-Tb-Vrr-uXXu4uKZe9sA